Part Number Hot Search : 
LF200 GH60N60 R2201247 MX7582T G1H10 30U3945 MCR16 AR22B1
Product Description
Full Text Search
 

To Download SST202 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 J/SST201 Series
N-Channel JFETs
J201 J202 J204 Product Summary
Part Number
J/SST201 J/SST202 J/SST204
SST201 SST202 SST204
VGS(off) (V)
-0.3 to -1.5 -0.8 to -4 -0.3 to -2
V(BR)GSS Min (V)
-40 -40 -25
gfs Min (mS)
0.5 1 0.5
IDSS Min (mA)
0.2 0.9 0.2
Features
D D D D Low Cutoff Voltage: J201 <1.5 V High Input Impedance Very Low Noise High Gain: AV = 80 @ 20 mA
Benefits
D Full Performance from Low Voltage Power Supply: Down to 1.5 V D Low Signal Loss/System Error D High System Sensitivity D High Quality Low-Level Signal Amplification
Applications
D High-Gain, Low-Noise Amplifiers D Low-Current, Low-Voltage Battery-Powered Amplifiers D Infrared Detector Amplifiers D Ultra High Input Impedance Pre-Amplifiers
Description
The J/SST201 series features low leakage, very low noise, and low cutoff voltage for use with low-level power supplies. The J/SST201 is excellent for battery powered equipment and low current amplifiers. The J series, TO-226 (TO-92) plastic package, provides low cost, while the SST series, TO-236 (SOT-23) package, provides surface-mount capability. Both the J and SST series are available in tape-and-reel for automated assembly (see Packaging Information).
TO-226AA (TO-92) D 1 D S 2 S G 3 Top View Top View J201 J202 J204 SST201 (P1)* SST202 (P2)* SST204 (P4)* *Marking Code for TO-236 2 1 3 G TO-236 (SOT-23)
For similar products in TO-206AA (TO-18) packaging, see the 2N4338/4339/4340/4341 data sheet.
Updates to this data sheet may be obtained via facsimile by calling Siliconix FaxBack, 1-408-970-5600. Please request FaxBack document #70233. Applications information may also be obtained via FaxBack, request document #70595 and document #70599.
Siliconix P-37995--Rev. D, 11-Aug-94
1
J/SST201 Series
Absolute Maximum Ratings
Gate-Drain, Gate-Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . -40 V Gate Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 mA Lead Temperature (1/16" from case for 10 sec.) . . . . . . . . . . . . . . . 300_C Storage Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -55 to 150_C Operating Junction Temperature . . . . . . . . . . . . . . . . . . . . -55 to 150_C Power Dissipationa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350 mW Notes a. Derate 2.8 mW/_C above 25_C
Specificationsa
Limits
J/SST201 J/SST202 J/SST204d
Parameter Static
Gate-Source Breakdown Voltage Gate-Source Cutoff Voltage Saturation Drain Currentc Gate Reverse Current Gate Operating Current Drain Cutoff Current Gate-Source Forward Voltage
Symbol
Test Conditions
Typb
Min
Max
Min
Max
Min
Max
Unit
V(BR)GSS VGS(off) IDSS IGSS IG ID(off) VGS(F)
IG = -1 mA , VDS = 0 V VDS = 15 V, ID = 10 nA VDS = 15 V, VGS = 0 V VGS = -20 V, VDS = 0 V TA = 125_C VDG = 10 V, ID = 0.1 mA VDS = 15 V, VGS = -5 V IG = 1 mA , VDS = 0 V -2 -1 -2 2 0.7
-40 -0.3 0.2 -1.5 1 -100
-40 -0.8 0.9 -4 4.5 -100
-25 -0.3 0.2 -2 3 -100
V mA pA nA pA V
Dynamic
Common-Source Forward Transconductance Common-Source Input Capacitance Common-Source Reverse Transfer Capacitance Equivalent Input Noise Voltage gfs Ciss Crss en VDS = 15 V, VGS = 0 V f = 1 kHz VDS = 15 V, VGS = 0 V S f = 1 MHz VDS = 10 V, VGS = 0 V f = 1 kHz 4.5 pF 1.3 6 nV Hz NPA NH 0.5 1 0.5 mS
Notes a. TA = 25_C unless otherwise noted. b. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. c. Pulse test: PW v300 ms duty cycle v3%. d. See 2N/SST5484 Series for J204 typical characteristic curves.
2
Siliconix P-37995--Rev. D, 11-Aug-94
J/SST201 Series
Typical Characteristics (25_C Unless Noted)
10 I DSS - Saturation Drain Current (mA)
Drain Current and Transconductance vs. Gate-Source Cutoff Voltage
IDSS @ VDS = 10 V, VGS = 0 V gfs @ VDS = 10 V, VGS = 0 V f = 1 kHz
5 g fs - Forward Transconductance (mS)
Gate Leakage Current
10 nA IG @ ID = 500 mA ID = 100 mA 1 nA I G - Gate Leakage (A) TA = 125_C IGSS @ 125_C ID = 500 mA 10 pA ID = 100 mA 1 pA TA = 25_C IGSS @ 25_C
8
4
6 gfs 4 IDSS
3
100 pA
2
2
1
0 0 -1 -2 -3 -4 -5 VGS(off) - Gate-Source Cutoff Voltage (V)
0
0.1 pA 0 15 VDG - Drain-Gate Voltage (V) 30
1500 rDS(on) - Drain-Source On-Resistance ( W )
On-Resistance and Output Conductance vs. Gate-Source Cutoff Voltage
10 g fs - Forward Transconductance (mS) g os - Output Conductance ( mS)
2
Common-Source Forward Transconductance vs. Drain Current
VGS(off) = -1.5 V VDS = 10 V f = 1 kHz
1200
gos
8
1.6 TA = -55_C 1.2 25_C 0.8
900 rDS 600
6
4
300 rDS @ ID = 100 mA, VGS = 0 V gos @ VDS = 10 V, VGS = 0 V, f = 1 kHz 0 0 -1 -2 -3 -4 -5 VGS(off) - Gate-Source Cutoff Voltage (V)
2
0.4
125_C
0
0 0.01 0.1 ID - Drain Current (mA) 1
Output Characteristics
400 VGS(off) = -0.7 V 360 I D - Drain Current ( m A) I D - Drain Current (mA) -0.1 V VGS = 0 V 1.6 2
Output Characteristics
VGS(off) = -1.5 V VGS = 0 V 1.2 -0.3 V 0.8 -0.6 V 0.4 -1.2 V 0 -0.9 V
240
160
-0.2 V -0.3 V
80 -0.5 V 0 0 4 8 12 16 20 VDS - Drain-Source Voltage (V) -0.4 V
0
4
8
12
16
20
VDS - Drain-Source Voltage (V)
Siliconix P-37995--Rev. D, 11-Aug-94
3
J/SST201 Series
Typical Characteristics (25_C Unless Noted)
Transfer Characteristics
500 VGS(off) = -0.7 V I D - Drain Current ( m A) 400 I D - Drain Current (mA) TA = -55_C 25_C 200 125_C 100 VDS = 10 V 1.6 TA = -55_C 1.2 25_C 0.8 2
Transfer Characteristics
VGS(off) = -1.5 V VDS = 10 V
300
0.4
125_C
0 0 -0.1 -0.2 -0.3 -0.4 -0.5 VGS - Gate-Source Voltage (V)
0 0 -0.4 -0.8 -1.2 -1.6 -2 VGS - Gate-Source Voltage (V)
Transconductance vs. Gate-Source Voltage
1.5 g fs - Forward Transconductance (mS) g fs - Forward Transconductance (mS) VGS(off) = -0.7 V 1.2 TA = -55_C 0.9 25_C VDS = 10 V f = 1 kHz
4
Transconductance vs. Gate-Source Voltage
VGS(off) = -1.5 V VDS = 10 V f = 1 kHz
3.2
2.4 TA = -55_C 1.6 25_C
0.6 125_C 0.3
0.8 125_C 0
0 0 -0.1 -0.2 -0.3 -0.4 -0.5 VGS - Gate-Source Voltage (V)
0
-0.4
-0.8
-1.2
-1.6
-2
VGS - Gate-Source Voltage (V)
200
Circuit Voltage Gain vs. Drain Current
g fs R L AV + 1 ) R g L os Assume VDD = 15 V, VDS = 5 V 10 V RL + I D rDS(on) - Drain-Source On-Resistance ( W )
2000
On-Resistance vs. Drain Current
160 A V - Voltage Gain
1600 VGS(off) = -0.7 V
120
1200
80 -1.5 V 40
VGS(off) = -0.7 V
800 -1.5 V 400
0 0.01 0.1 ID - Drain Current (mA) 1
0 0.01 0.1 ID - Drain Current (mA) 1
4
Siliconix P-37995--Rev. D, 11-Aug-94
J/SST201 Series
Typical Characteristics (25_C Unless Noted)
10
Common-Source Input Capacitance vs. Gate-Source Voltage
f = 1 MHz C rss - Reverse Feedback Capacitance (pF)
5
Common-Source Reverse Feedback Capacitance vs. Gate-Source Voltage
f = 1 MHz
C iss - Input Capacitance (pF)
8
4
6 VDS = 0 V 4 10 V 2
3 VDS = 0 V 2
1
10 V
0 0 -4 -8 -12 -16 -20 VGS - Gate-Source Voltage (V)
0 0 -4 -8 -12 -16 -20 VGS - Gate-Source Voltage (V)
3
Output Conductance vs. Drain Current
VGS(off) = -1.5 V VDS = 10 V f = 1 kHz
20
Equivalent Input Noise Voltage vs. Frequency
VDS = 10 V
g os - Output Conductance ( mS)
2.4
(nV / Hz)
16 ID @ 100 mA
1.8 TA = -55_C 0.8 25_C
12 e n - Noise Voltage
8 VGS = 0 V 4
0.4 125_C 0 0.01 0.1 ID - Drain Current (mA) 1
0 10 100 1k f - Frequency (Hz) 10 k 100 k
300
Output Characteristics
VGS(off) = -0.7 V VGS = 0 V
1.0
Output Characteristics
VGS(off) = -1.5 V
240 I D - Drain Current ( m A) -0.1 180 -0.2 120 -0.5 -0.3 -0.4 I D - Drain Current (mA)
0.8
VGS = 0 V
0.6
-0.3
0.4
-0.6
60
0.2
-0.9 -1.2
0 0 0.1 0.2 0.3 0.4 0.5 VDS - Drain-Source Voltage (V)
0 0 0.2 0.4 0.6 0.8 1.0 VDS - Drain-Source Voltage (V)
Siliconix P-37995--Rev. D, 11-Aug-94
5


▲Up To Search▲   

 
Price & Availability of SST202

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X